Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (205)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557764

RESUMO

This protocol describes the synthesis of Au nanoparticle seeds and the subsequent formation of Au-Sn bimetallic nanoparticles. These nanoparticles have potential applications in catalysis, optoelectronics, imaging, and drug delivery. Previously, methods for producing alloy nanoparticles have been time-consuming, require complex reaction conditions, and can have inconsistent results. The outlined protocol first describes the synthesis of approximately 13 nm Au nanoparticle seeds using the Turkevich method. The protocol next describes the reduction of Sn and its incorporation into the Au seeds to generate Au-Sn alloy nanoparticles. The optical and structural characterization of these nanoparticles is described. Optically, prominent localized surface plasmon resonances (LSPRs) are apparent using UV-visible spectroscopy. Structurally, powder X-ray diffraction (XRD) reflects all particles to be less than 20 nm and shows patterns for Au, Sn, and multiple Au-Sn intermetallic phases. Spherical morphology and size distribution are obtained from transmission electron microscopy (TEM) imaging. TEM reveals that after Sn incorporation, the nanoparticles grow to approximately 15 nm in diameter.


Assuntos
Ligas de Ouro , Nanopartículas Metálicas , Prata/química , Ouro/química , Estanho , Nanopartículas Metálicas/química , Ligas/química
2.
Nat Mater ; 22(12): 1556-1563, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37845322

RESUMO

Protein crystallization plays a central role in structural biology. Despite this, the process of crystallization remains poorly understood and highly empirical, with crystal contacts, lattice packing arrangements and space group preferences being largely unpredictable. Programming protein crystallization through precisely engineered side-chain-side-chain interactions across protein-protein interfaces is an outstanding challenge. Here we develop a general computational approach for designing three-dimensional protein crystals with prespecified lattice architectures at atomic accuracy that hierarchically constrains the overall number of degrees of freedom of the system. We design three pairs of oligomers that can be individually purified, and upon mixing, spontaneously self-assemble into >100 µm three-dimensional crystals. The structures of these crystals are nearly identical to the computational design models, closely corresponding in both overall architecture and the specific protein-protein interactions. The dimensions of the crystal unit cell can be systematically redesigned while retaining the space group symmetry and overall architecture, and the crystals are extremely porous and highly stable. Our approach enables the computational design of protein crystals with high accuracy, and the designed protein crystals, which have both structural and assembly information encoded in their primary sequences, provide a powerful platform for biological materials engineering.


Assuntos
Proteínas , Proteínas/química , Cristalização
3.
STAR Protoc ; 4(3): 102410, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393611

RESUMO

Plasmonic nanoparticles and nanocrystalline materials have broad applicability in catalysis, optoelectronics, sensing, and sustainability. Below, we detail a robust protocol for the synthesis of bimetallic Au-Sn nanoparticles in mild, aqueous conditions. This protocol describes the steps for synthesizing gold nanoparticle seeds, diffusing Sn into the seeds by chemical reduction, and the optical and structural analysis by UV-visible spectroscopy, X-ray diffraction, and electron microscopy. For complete details on the use and execution of this protocol, please refer to Fonseca Guzman et al.1.

4.
J Am Chem Soc ; 145(11): 6319-6329, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36913666

RESUMO

Polymerization-induced crystallization-driven self-assembly (PI-CDSA) is combined, for the first time, with helical, rod-coil block copolymer (BCP) self-assembly to enable scalable and controllable in situ synthesis of chiral nanostructures of variable shape, size, and dimensionality. Herein, we report newly developed asymmetric PI-CDSA (A-PI-CDSA) methodologies in the synthesis and in situ self-assembly of chiral, rod-coil BCPs composed of poly(aryl isocyanide) (PAIC) rigid-rod and poly(ethylene glycol) (PEG) random-coil components. Using PEG-based nickel(II) macroinitiators, the construction of PAIC-BCP nanostructures with variable chiral morphologies is accomplished at solids contents ranging 5.0-10 wt %. At low core-to-corona ratios for PAIC-BCPs, we demonstrate the scalable formation of chiral one-dimensional (1D) nanofibers via "living" A-PI-CDSA whose contour lengths can be tuned through alterations to unimer-to-1D seed particle ratio. At high core-to-corona ratios, A-PI-CDSA was implemented for the rapid fabrication of molecularly thin, uniform hexagonal nanosheets via spontaneous nucleation and growth aided by vortex agitation. Investigations into 2D seeded, living A-PI-CDSA revealed a brand-new paradigm in the context of CDSA where hierarchically chiral, M helical spirangle morphologies (i.e., hexagonal helicoids) are size-tuned in three dimensions (i.e., heights and areas) via alterations to unimer-to-seed ratio. These unique nanostructures are formed in situ at scalable solids contents up to 10 wt % via rapid crystallization about screw dislocation defect sites in an enantioselective fashion. The liquid crystalline nature of PAIC blocks dictates the hierarchical assembly of these BCPs, with chirality translated across length scales and in multiple dimensions affording large amplifications in chiroptical activity with g-factors reaching -0.030 for spirangle nanostructures.

5.
Nanoscale ; 14(3): 602-611, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34985484

RESUMO

Plasmonic materials are promising for applications in enhanced sensing, energy, and advanced optical communications. These applications, however, often require chemical and physical functionality that is suited and designed for the specific application. In particular, plasmonic materials need to access the wide spectral range from the ultraviolet to the mid-infrared in addition to having the requisite surface characteristics, temperature dependence, or structural features that are not intrinsic to or easily accessed by the noble metals. Herein, we describe current progress and identify promising strategies for further expanding the capabilities of plasmonic materials both across the electromagnetic spectrum and in functional areas that can enable new technology and opportunities.

6.
Adv Mater ; 30(49): e1804867, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30302836

RESUMO

Electrochemical carbon dioxide reduction (CO2 ) is a promising technology to use renewable electricity to convert CO2 into valuable carbon-based products. For commercial-scale applications, however, the productivity and selectivity toward multi-carbon products must be enhanced. A facile surface reconstruction approach that enables tuning of CO2 -reduction selectivity toward C2+ products on a copper-chloride (CuCl)-derived catalyst is reported here. Using a novel wet-oxidation process, both the oxidation state and morphology of Cu surface are controlled, providing uniformity of the electrode morphology and abundant surface active sites. The Cu surface is partially oxidized to form an initial Cu (I) chloride layer which is subsequently converted to a Cu (I) oxide surface. High C2+ selectivity on these catalysts are demonstrated in an H-cell configuration, in which 73% Faradaic efficiency (FE) for C2+ products is reached with 56% FE for ethylene (C2 H4 ) and overall current density of 17 mA cm-2 . Thereafter, the method into a flow-cell configuration is translated, which allows operation in a highly alkaline medium for complete suppression of CH4 production. A record C2+ FE of ≈84% and a half-cell power conversion efficiency of 50% at a partial current density of 336 mA cm-2 using the reconstructed Cu catalyst are reported.

7.
J Am Chem Soc ; 139(29): 9827-9830, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28718644

RESUMO

Metal-organic frameworks (MOFs) are a class of modular, crystalline, and porous materials that hold promise for storage and transport of chemical cargoes. Though MOFs have been studied in bulk forms, ways of deliberately manipulating the external surface functionality of MOF nanoparticles are less developed. A generalizable approach to modify their surfaces would allow one to impart chemical functionality onto the particle surface that is independent of the bulk MOF structure. Moreover, the use of a chemically programmable ligand, such as DNA, would allow for the manipulation of interparticle interactions. Herein, we report a coordination chemistry-based strategy for the surface functionalization of the external metal nodes of MOF nanoparticles with terminal phosphate-modified oligonucleotides. The external surfaces of nine distinct archetypical MOF particles containing four different metal species (Zr, Cr, Fe, and Al) were successfully functionalized with oligonucleotides, illustrating the generality of this strategy. By taking advantage of the programmable and specific interactions of DNA, 11 distinct MOF particle-inorganic particle core-satellite clusters were synthesized. In these hybrid nanoclusters, the relative stoichiometry, size, shape, and composition of the building blocks can all be independently controlled. This work provides access to a new set of nucleic acid-nanoparticle conjugates, which may be useful as programmable material building blocks and as probes for measuring and manipulating intracellular processes.


Assuntos
DNA/química , Estruturas Metalorgânicas/química , Nanopartículas/química , Oligonucleotídeos/química , Estruturas Metalorgânicas/síntese química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
8.
J Am Chem Soc ; 139(27): 9359-9363, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28660764

RESUMO

Using renewable energy to recycle CO2 provides an opportunity to both reduce net CO2 emissions and synthesize fuels and chemical feedstocks. It is of central importance to design electrocatalysts that both are efficient and can access a tunable spectrum of products. Syngas, a mixture of carbon monoxide (CO) and hydrogen (H2), is an important chemical precursor that can be converted downstream into small molecules or larger hydrocarbons by fermentation or thermochemistry. Many processes that utilize syngas require different syngas compositions: we therefore pursued the rational design of a family of electrocatalysts that can be programmed to synthesize different designer syngas ratios. We utilize in situ surface-enhanced Raman spectroscopy and first-principles density functional theory calculations to develop a systematic picture of CO* binding on Cu-enriched Au surface model systems. Insights from these model systems are then translated to nanostructured electrocatalysts, whereby controlled Cu enrichment enables tunable syngas production while maintaining current densities greater than 20 mA/cm2.

9.
Nano Lett ; 17(4): 2313-2318, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28358518

RESUMO

DNA-programmable assembly has been used to prepare superlattices composed of octahedral and spherical nanoparticles, respectively. These superlattices have the same body-centered cubic lattice symmetry and macroscopic rhombic dodecahedron crystal habit but tunable lattice parameters by virtue of the DNA length, allowing one to study and determine the effect of nanoscale structure and lattice parameter on the light-matter interactions in the superlattices. Backscattering measurements and finite-difference time-domain simulations have been used to characterize these two classes of superlattices. Superlattices composed of octahedral nanoparticles exhibit polarization-dependent backscattering but via a trend that is opposite to that observed in the polarization dependence for analogous superlattices composed of spherical nanoparticles. Electrodynamics simulations show that this polarization dependence is mainly due to the anisotropy of the nanoparticles and is observed only if the octahedral nanoparticles are well-aligned within the superlattices. Both plasmonic and photonic modes are identified in such structures, both of which can be tuned by controlling the size and shape of the nanoparticle building blocks, the lattice parameters, and the overall size of the three-dimensional superlattices (without changing habit).


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Anisotropia , Cristalização , Luz , Tamanho da Partícula , Espectrofotometria
10.
Nano Lett ; 17(2): 1312-1317, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28094953

RESUMO

Copper is uniquely active for the electrocatalytic reduction of carbon dioxide (CO2) to products beyond carbon monoxide, such as methane (CH4) and ethylene (C2H4). Therefore, understanding selectivity trends for CO2 electrocatalysis on copper surfaces is critical for developing more efficient catalysts for CO2 conversion to higher order products. Herein, we investigate the electrocatalytic activity of ultrathin (diameter ∼20 nm) 5-fold twinned copper nanowires (Cu NWs) for CO2 reduction. These Cu NW catalysts were found to exhibit high CH4 selectivity over other carbon products, reaching 55% Faradaic efficiency (FE) at -1.25 V versus reversible hydrogen electrode while other products were produced with less than 5% FE. This selectivity was found to be sensitive to morphological changes in the nanowire catalyst observed over the course of electrolysis. Wrapping the wires with graphene oxide was found to be a successful strategy for preserving both the morphology and reaction selectivity of the Cu NWs. These results suggest that product selectivity on Cu NWs is highly dependent on morphological features and that hydrocarbon selectivity can be manipulated by structural evolution or the prevention thereof.


Assuntos
Dióxido de Carbono/química , Cobre/química , Técnicas Eletroquímicas/métodos , Hidrocarbonetos/química , Nanofios/química , Catálise , Eletrodos , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
11.
J Phys Chem Lett ; 7(22): 4732-4738, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27934204

RESUMO

The magneto-optical Kerr effect is a striking phenomenon whereby the optical properties of a material change under an applied magnetic field. Though promising for sensing and data storage technology, these properties are typically weak in magnitude and are inherently limited by the bulk properties of the active magnetic material. In this work, we theoretically demonstrate that plasmonic thin-film assemblies on a cobalt substrate can achieve tunable transverse magneto-optical (TMOKE) responses throughout the visible and near-infrared (300-900 nm). In addition to exhibiting wide spectral tunability, this response can be varied in sign and magnitude by changing the plasmonic volume fraction (1-20%), the composition and arrangement of the assembly, and the shape of the nanoparticle inclusions. Of particular interest is the newly discovered sensitivity of the sign and intensity of the TMOKE spectrum to collective metallic plasmonic behavior in silver, mixed silver-gold, and anisotropic superlattices.

12.
Nano Lett ; 16(12): 7968-7973, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960451

RESUMO

We report here the first fabrication of aluminum film-over nanosphere (AlFON) substrates for UV surface-enhanced resonance Raman scattering (UVSERRS) at the deepest UV wavelength used to date (λex = 229 nm). We characterize the AlFONs fabricated with two different support microsphere sizes using localized surface plasmon resonance spectroscopy, electron microscopy, SERRS of adenine, tris(bipyridine)ruthenium(II), and trans-1,2-bis(4-pyridyl)-ethylene, SERS of 6-mercapto-1-hexanol (as a nonresonant molecule), and dielectric function analysis. We find that AlFONs fabricated with the 210 nm microspheres generate an enhancement factor of approximately 104-5, which combined with resonance enhancement of the adsorbates provides enhancement factors greater than 106. These experimental results are supported by theoretical analysis of the dielectric function. Hence our results demonstrate the advantages of using AlFON substrates for deep UVSERRS enhancement and contribute to broadening the SERS application range with tunable and affordable substrates.

13.
J Am Chem Soc ; 138(32): 10096-9, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27501464

RESUMO

While the chemical composition of semiconducting metal halide perovskites can be precisely controlled in thin films for photovoltaic devices, the synthesis of perovskite nanostructures with tunable dimensions and composition has not been realized. Here, we describe the templated synthesis of uniform perovskite nanowires with controlled diameter (50-200 nm). Importantly, by providing three examples (CH3NH3PbI3, CH3NH3PbBr3, and Cs2SnI6), we show that this process is composition general and results in oriented nanowire arrays on transparent conductive substrates.

14.
Nano Lett ; 16(8): 5114-9, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27428463

RESUMO

In atomic systems, the mixing of metals results in distinct phase behavior that depends on the identity and bonding characteristics of the atoms. In nanoscale systems, the use of oligonucleotides as programmable "bonds" that link nanoparticle "atoms" into superlattices allows for the decoupling of atom identity and bonding. While much research in atomic systems is dedicated to understanding different phase behavior of mixed metals, it is not well understood on the nanoscale how changes in the nanoscale "bond" affect the phase behavior of nanoparticle crystals. In this work, the identity of the atom is kept the same, but the chemical nature of the bond is altered, which is not possible in atomic systems, through the use of DNA and RNA bonding elements. These building blocks assemble into single crystal nanoparticle superlattices with mixed DNA and RNA bonding elements throughout. The nanoparticle crystals can be dynamically changed through the selective and enzymatic hydrolysis of the RNA bonding elements, resulting in superlattices that retain their crystalline structure and habit, while incorporating up to 35% random vacancies generated from the nanoparticles removed. Therefore, the bonding elements of nanoparticle crystals can be enzymatically and selectively addressed without affecting the nature of the atom.


Assuntos
DNA/química , Nanopartículas/química , Oligonucleotídeos/química , RNA/química
15.
Adv Mater ; 28(14): 2790-4, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26849019

RESUMO

Mixed silver and gold plasmonic nanoparticle architectures are synthesized using DNA-programmable assembly, unveiling exquisitely tunable optical properties that are predicted and explained both by effective thin-film models and explicit electrodynamic simulations. These data demonstrate that the manner and ratio with which multiple metallic components are arranged can greatly alter optical properties, including tunable color and asymmetric reflectivity behavior of relevance for thin-film applications.


Assuntos
DNA/química , Nanopartículas Metálicas/química , Metalurgia/métodos , DNA/metabolismo , Ouro/química , Tamanho da Partícula , Prata/química , Espectrofotometria , Ressonância de Plasmônio de Superfície
16.
J Am Chem Soc ; 137(42): 13566-71, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26465067

RESUMO

Chemical bonds are a key determinant of the structure and properties of a material. Thus, rationally designing arbitrary materials requires complete control over the bond. While atomic bonding is dictated by the identity of the atoms, nanoparticle superlattice engineering, where nanoparticle "atoms" are held together by DNA "bonds", offers a route to design crystal lattices in a way that nature cannot: through altering the oligonucleotide bond. Herein, the use of RNA, as opposed to DNA, is explored by synthesizing superlattices in which nanoparticles are bonded by DNA/DNA, RNA/RNA, and DNA/RNA duplexes. By moving beyond nanoparticle superlattices assembled only with DNA, a new degree of freedom is introduced, providing programmed responsiveness to enzymes and greater bond versatility. Therefore, the oligonucleotide bond can have programmable function beyond dictating the structure of the material and moves nanoparticle superlattices closer to naturally occurring biomaterials, where the line between structural and functional elements is blurred.


Assuntos
Nanopartículas Metálicas/química , Oligonucleotídeos/química , DNA/química , Ouro/química , Modelos Moleculares
17.
Proc Natl Acad Sci U S A ; 112(33): 10292-7, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26240356

RESUMO

Bottom-up assemblies of plasmonic nanoparticles exhibit unique optical effects such as tunable reflection, optical cavity modes, and tunable photonic resonances. Here, we compare detailed simulations with experiment to explore the effect of structural inhomogeneity on the optical response in DNA-gold nanoparticle superlattices. In particular, we explore the effect of background environment, nanoparticle polydispersity (>10%), and variation in nanoparticle placement (∼5%). At volume fractions less than 20% Au, the optical response is insensitive to particle size, defects, and inhomogeneity in the superlattice. At elevated volume fractions (20% and 25%), structures incorporating different sized nanoparticles (10-, 20-, and 40-nm diameter) each exhibit distinct far-field extinction and near-field properties. These optical properties are most pronounced in lattices with larger particles, which at fixed volume fraction have greater plasmonic coupling than those with smaller particles. Moreover, the incorporation of experimentally informed inhomogeneity leads to variation in far-field extinction and inconsistent electric-field intensities throughout the lattice, demonstrating that volume fraction is not sufficient to describe the optical properties of such structures. These data have important implications for understanding the role of particle and lattice inhomogeneity in determining the properties of plasmonic nanoparticle lattices with deliberately designed optical properties.


Assuntos
DNA/química , Nanopartículas Metálicas/química , Nanocompostos/química , Simulação por Computador , Cristalização , Campos Eletromagnéticos , Eletrônica , Ouro/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Óptica e Fotônica , Tamanho da Partícula , Dióxido de Silício/química , Síncrotrons , Raios X
18.
Nano Lett ; 15(8): 5273-8, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26133945

RESUMO

We report a template-based technique for the preparation of solution-dispersible nanorings composed of Au, Ag, Pt, Ni, and Pd with control over outer diameter (60-400 nm), inner diameter (25-230 nm), and height (40 nm to a few microns). Systematic and independent control of these parameters enables fine-tuning of the three characteristic localized surface plasmon resonance modes of Au nanorings and the resulting solution-based extinction spectra from the visible to the near-infrared. This synthetic approach provides a new pathway for solution-based investigations of surfaces with negative curvature.

19.
Nano Lett ; 15(7): 4699-703, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26046948

RESUMO

Control of both photonic and plasmonic coupling in a single optical device represents a challenge due to the distinct length scales that must be manipulated. Here, we show that optical metasurfaces with such control can be constructed using an approach that combines top-down and bottom-up processes, wherein gold nanocubes are assembled into ordered arrays via DNA hybridization events onto a gold film decorated with DNA-binding regions defined using electron beam lithography. This approach enables one to systematically tune three critical architectural parameters: (1) anisotropic metal nanoparticle shape and size, (2) the distance between nanoparticles and a metal surface, and (3) the symmetry and spacing of particles. Importantly, these parameters allow for the independent control of two distinct optical modes, a gap mode between the particle and the surface and a lattice mode that originates from cooperative scattering of many particles in an array. Through reflectivity spectroscopy and finite-difference time-domain simulation, we find that these modes can be brought into resonance and coupled strongly. The high degree of synthetic control enables the systematic study of this coupling with respect to geometry, lattice symmetry, and particle shape, which together serve as a compelling example of how nanoparticle-based optics can be useful to realize advanced nanophotonic structures that hold implications for sensing, quantum plasmonics, and tunable absorbers.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Dispositivos Ópticos , Desenho de Equipamento , Nanopartículas Metálicas/ultraestrutura , Nanotecnologia , Hibridização de Ácido Nucleico , Óptica e Fotônica/instrumentação , Fótons
20.
Adv Mater ; 27(20): 3159-63, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25864411

RESUMO

A novel method for preparing conformal silica-embedded crystalline nanoparticle sheets via DNA programmable assembly provides independent control over nanoparticle size, nanoparticle spacing, and film thickness. The conformal materials retain the nanoparticle crystallinity and spacing after being transferred to flat or highly curved substrates even after being subjected to various mechanical, physical, and chemical stimuli.


Assuntos
DNA/química , Nanopartículas/química , Vidro , Teste de Materiais , Imagem Óptica , Tamanho da Partícula , Polimetil Metacrilato/química , Dióxido de Silício/química , Aço Inoxidável , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...